Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.416
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 858-867, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621893

RESUMO

Benign prostatic hyperplasia(BPH) is a common disease of the male urinary system, and its incidence rate in China is increasing. However, the mechanism underlying the pathogenesis of BPH remains unclear. Some studies demonstrated that the incidence of BPH was related to the change in the levels of steroid hormones. Too high content of dihydrotestosterone(DHT) in the body may cause BPH and other related diseases. Testosterone(T) is converted to DHT by 5α-reductase(SRD5A). By inhibiting the activity of this enzyme, the production of DHT can be reduced, and then the incidence of BPH can be lowered. Therefore, it has drawn great attention to screen and discover safer and more effective 5α-reductase inhibitors from natural medicines to treat prostatic hyperplasia without affecting the physiological function of men. This review summarizes the characteristics and tissue distribution of 5α-reductase, the discovery of 5α-reductase inhibitors in traditional Chinese medicine and natural medicines, 5α-reductase inhibitors commonly used in clinical practice and their side effects, as well as the animal models of prostatic hyperplasia and common detection indicators, aiming to provide a reference for more in-depth understanding and research about BPH and development of drugs.


Assuntos
Inibidores de 5-alfa Redutase , Hiperplasia Prostática , Animais , Humanos , Masculino , Inibidores de 5-alfa Redutase/efeitos adversos , Hiperplasia Prostática/tratamento farmacológico , Testosterona/uso terapêutico , Colestenona 5 alfa-Redutase , Di-Hidrotestosterona , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/química
2.
J Exp Clin Cancer Res ; 43(1): 100, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566164

RESUMO

PURPOSE: 5-fluorouracil (5-FU) is inefficiently converted to the active anti-cancer metabolite, fluorodeoxyuridine-monophosphate (FUDR-MP), is associated with dose-limiting toxicities and challenging administration schedules. NUC-3373 is a phosphoramidate nucleotide analog of fluorodeoxyuridine (FUDR) designed to overcome these limitations and replace fluoropyrimidines such as 5-FU. PATIENTS AND METHODS: NUC-3373 was administered as monotherapy to patients with advanced solid tumors refractory to standard therapy via intravenous infusion either on Days 1, 8, 15 and 22 (Part 1) or on Days 1 and 15 (Part 2) of 28-day cycles until disease progression or unacceptable toxicity. Primary objectives were maximum tolerated dose (MTD) and recommended Phase II dose (RP2D) and schedule of NUC-3373. Secondary objectives included pharmacokinetics (PK), and anti-tumor activity. RESULTS: Fifty-nine patients received weekly NUC-3373 in 9 cohorts in Part 1 (n = 43) and 3 alternate-weekly dosing cohorts in Part 2 (n = 16). They had received a median of 3 prior lines of treatment (range: 0-11) and 74% were exposed to prior fluoropyrimidines. Four experienced dose-limiting toxicities: two Grade (G) 3 transaminitis; one G2 headache; and one G3 transient hypotension. Commonest treatment-related G3 adverse event of raised transaminases occurred in < 10% of patients. NUC-3373 showed a favorable PK profile, with dose-proportionality and a prolonged half-life compared to 5-FU. A best overall response of stable disease was observed, with prolonged progression-free survival. CONCLUSION: NUC-3373 was well-tolerated in a heavily pre-treated solid tumor patient population, including those who had relapsed on prior 5-FU. The MTD and RP2D was defined as 2500 mg/m2 NUC-3373 weekly. NUC-3373 is currently in combination treatment studies. TRIAL REGISTRATION: Clinicaltrials.gov registry number NCT02723240. Trial registered on 8th December 2015. https://clinicaltrials.gov/study/NCT02723240 .


Assuntos
Floxuridina , Neoplasias , Humanos , Floxuridina/uso terapêutico , Timidilato Sintase/uso terapêutico , Neoplasias/patologia , Fluoruracila/efeitos adversos , Inibidores Enzimáticos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
3.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543047

RESUMO

Close to 19% of the world population suffers from anxiety. Current medications for this chronic mental disorder have improved treatment over the last half century or more, but the newer anxiolytics have proved disappointing, and enormous challenges remain. Nitric oxide (NO), an intra- and inter-cellular messenger in the brain, is involved in the pathogenesis of anxiety. In particular, excessive NO production might contribute to its pathology. This implies that it might be useful to reduce nitrergic activity; therefore, molecules aiming to downregulate NO production such as NO synthase inhibitors (NOSIs) might be candidates. Here, it was intended to critically review advances in research on these emerging molecules for the treatment of anxiety disorders. Current assessment indicates that, although NOSIs are implicated in anxiety, their potential anti-anxiety action remains to be established.


Assuntos
Ansiolíticos , Óxido Nítrico , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Transtornos de Ansiedade/tratamento farmacológico , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico
4.
Cell ; 187(7): 1666-1684.e26, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490194

RESUMO

Diminished hepatocyte regeneration is a key feature of acute and chronic liver diseases and after extended liver resections, resulting in the inability to maintain or restore a sufficient functional liver mass. Therapies to restore hepatocyte regeneration are lacking, making liver transplantation the only curative option for end-stage liver disease. Here, we report on the structure-based development and characterization (nuclear magnetic resonance [NMR] spectroscopy) of first-in-class small molecule inhibitors of the dual-specificity kinase MKK4 (MKK4i). MKK4i increased liver regeneration upon hepatectomy in murine and porcine models, allowed for survival of pigs in a lethal 85% hepatectomy model, and showed antisteatotic and antifibrotic effects in liver disease mouse models. A first-in-human phase I trial (European Union Drug Regulating Authorities Clinical Trials [EudraCT] 2021-000193-28) with the clinical candidate HRX215 was conducted and revealed excellent safety and pharmacokinetics. Clinical trials to probe HRX215 for prevention/treatment of liver failure after extensive oncological liver resections or after transplantation of small grafts are warranted.


Assuntos
Inibidores Enzimáticos , Falência Hepática , MAP Quinase Quinase 4 , Animais , Humanos , Camundongos , Hepatectomia/métodos , Hepatócitos , Fígado , Hepatopatias/tratamento farmacológico , Falência Hepática/tratamento farmacológico , Falência Hepática/prevenção & controle , Regeneração Hepática , Suínos , MAP Quinase Quinase 4/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico
5.
Eur J Med Chem ; 268: 116285, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428273

RESUMO

Biological studies on the endocannabinoid system (ECS) have suggested that monoacylglycerol lipase (MAGL), an essential enzyme responsible for the hydrolysis of 2-arachidonoylglycerol (2-AG), is a novel target for developing antidepressants. A decrease of 2-AG levels in the hippocampus of the brain has been observed in depressive-like models induced by chronic stress. Herein, employing a structure-based approach, we designed and synthesized a new class of (piperazine-1-carbonyl) quinolin-2(1H)-one derivatives as potent, reversible and selective MAGL inhibitors. And detailed structure-activity relationships (SAR) studies were discussed. Compound 27 (IC50 = 10.3 nM) exhibited high bioavailability (92.7%) and 2-AG elevation effect in vivo. Additionally, compound 27 exerted rapid antidepressant effects caused by chronic restraint stress (CRS) and didn't show signs of addictive properties in the conditioned place preference (CPP) assays. Our study is the first to report that reversible MAGL inhibitors can treat chronic stress-induced depression effectively, which may provide a new potential therapeutic strategy for the discovery of an original class of safe, rapid antidepressant drugs.


Assuntos
Inibidores Enzimáticos , Monoacilglicerol Lipases , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Monoacilglicerol Lipases/metabolismo , Depressão/tratamento farmacológico , Monoglicerídeos , Relação Estrutura-Atividade , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Endocanabinoides
6.
Med ; 5(3): 184-186, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38460498

RESUMO

Favorable results were achieved in a phase 3 clinical trial (IMerge) with the telomerase inhibitor imetelstat in transfusion-dependent patients with lower-risk myelodysplastic syndromes (MDSs) who relapsed or were refractory to erythropoiesis-stimulating agents.1 Imetelstat is likely to become a useful addition to our limited therapeutic options for patients with MDS.


Assuntos
Síndromes Mielodisplásicas , Humanos , Síndromes Mielodisplásicas/tratamento farmacológico , Oligonucleotídeos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Transfusão de Sangue
7.
Sci Adv ; 10(13): eadm9859, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536921

RESUMO

Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Glutamina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Inibidores Enzimáticos/uso terapêutico , Mutação
8.
BMJ Open Respir Res ; 11(1)2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413120

RESUMO

OBJECTIVES: Mycophenolate mofetil (MMF) and azathioprine (AZA) are immunomodulatory treatments in interstitial lung disease (ILD). This systematic review aimed to evaluate the efficacy of MMF or AZA on pulmonary function in ILD. DESIGN: Population included any ILD diagnosis, intervention included MMF or AZA treatment, outcome was delta change from baseline in per cent predicted forced vital capacity (%FVC) and gas transfer (diffusion lung capacity of carbon monoxide, %DLco). The primary endpoint compared outcomes relative to placebo comparator, the secondary endpoint assessed outcomes in treated groups only. ELIGIBILITY CRITERIA: Randomised controlled trials (RCTs) and prospective observational studies were included. No language restrictions were applied. Retrospective studies and studies with high-dose concomitant steroids were excluded. DATA SYNTHESIS: The systematic search was performed on 9 May. Meta-analyses according to drug and outcome were specified with random effects, I2 evaluated heterogeneity and Grading of Recommendations, Assessment, Development and Evaluation evaluated certainty of evidence. Primary endpoint analysis was restricted to RCT design, secondary endpoint included subgroup analysis according to prospective observational or RCT design. RESULTS: A total of 2831 publications were screened, 12 were suitable for quantitative synthesis. Three MMF RCTs were included with no significant effect on the primary endpoints (%FVC 2.94, 95% CI -4.00 to 9.88, I2=79.3%; %DLco -2.03, 95% CI -4.38 to 0.32, I2=0.0%). An overall 2.03% change from baseline in %FVC (95% CI 0.65 to 3.42, I2=0.0%) was observed in MMF, and RCT subgroup summary estimated a 4.42% change from baseline in %DLCO (95% CI 2.05 to 6.79, I2=0.0%). AZA studies were limited. All estimates were considered very low certainty evidence. CONCLUSIONS: There were limited RCTs of MMF or AZA and their benefit in ILD was of very low certainty. MMF may support preservation of pulmonary function, yet confidence in the effect was weak. To support high certainty evidence, RCTs should be designed to directly assess MMF efficacy in ILD. PROSPERO REGISTRATION NUMBER: CRD42023423223.


Assuntos
Azatioprina , Doenças Pulmonares Intersticiais , Humanos , Azatioprina/uso terapêutico , Azatioprina/farmacologia , Imunossupressores/uso terapêutico , Doenças Pulmonares Intersticiais/diagnóstico , Pulmão , Ácido Micofenólico/uso terapêutico , Ácido Micofenólico/farmacologia , Inibidores Enzimáticos/uso terapêutico , Estudos Observacionais como Assunto
9.
Bioorg Med Chem ; 101: 117651, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401457

RESUMO

Lysine-specific demethylase 1 (LSD1) is a histone lysine demethylase that is significantly overexpressed or dysregulated in different cancers and plays important roles in cell growth, invasion, migration, immune escape, angiogenesis, gene regulation, and transcription. Therefore, it is a superb target for the discovery of novel antitumor agents. However, because of their innate and acquired resistance and low selectivity, LSD1 inhibitors are associated with limited therapeutic efficacy and high toxicity. Furthermore, LSD1 inhibitors synergistically improve the efficacy of additional antitumor drugs, which encourages numerous medicinal chemists to innovate and develop new-generation LSD1-based dual-target agents. This review discusses the theoretical foundation of the design of LSD1-based dual-target agents and summarizes their possible applications in treating cancers.


Assuntos
Antineoplásicos , Histona Desmetilases , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Regulação da Expressão Gênica , Histona Desmetilases/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/patologia
10.
Exp Hematol ; 132: 104179, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342295

RESUMO

Myeloid leukemia associated with Down syndrome (ML-DS) responds well to chemotherapy and has a favorable prognosis, but the clinical outcome of patients with refractory or relapsed ML-DS is dismal. We recently reported a case of relapsed ML-DS with an effective response to a DNA methyltransferase inhibitor, azacitidine (AZA). However, the efficacy of AZA for refractory or relapsed ML-DS remains uncertain. Here, we investigated the effects and mechanism of action of AZA on three ML-DS cell lines derived from relapsed cases. AZA inhibited the proliferation of all examined ML-DS cell lines to the same extent as that of AZA-sensitive acute myeloid leukemia non-Down syndrome cell lines. Transient low-dose AZA treatment exerted durable antileukemic effects on ML-DS cells. The inhibitory effect included cell cycle arrest, apoptosis, and reduction of aldehyde dehydrogenase activity. Comprehensive differential gene expression analysis showed that AZA induced megakaryocytic differentiation in all ML-DS cell lines examined. Furthermore, AZA induced activation of type I interferon-stimulated genes, primarily involved in antiproliferation signaling, without stimulation of the interferon receptor-mediated autocrine system. Activation of the type I interferon pathway by stimulation with interferon-α exerted antiproliferative effects on ML-DS cells, suggesting that AZA exerts its antileukemic effects on ML-DS cells at least partially through the type I interferon pathway. Moreover, the effect of AZA on normal hematopoiesis did not differ significantly between individuals with non-Down syndrome and Down syndrome. In summary, this study suggests that AZA is a potentially effective treatment option for ML-DS disease control, including relapsed cases, and has reduced side effects.


Assuntos
Azacitidina , Síndrome de Down , Inibidores Enzimáticos , Interferon Tipo I , Leucemia Mieloide Aguda , Humanos , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Linhagem Celular , DNA , Síndrome de Down/complicações , Síndrome de Down/tratamento farmacológico , Síndrome de Down/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Metiltransferases
11.
Clin Cancer Res ; 30(6): 1175-1188, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38231483

RESUMO

PURPOSE: DNA methylation causes silencing of tumor-suppressor and differentiation-associated genes, being linked to chemoresistance. Previous studies demonstrated that hypomethylating agents (HMA) resensitize ovarian cancer to chemotherapy. NTX-301 is a highly potent and orally bioavailable HMA, in early clinical development. EXPERIMENTAL DESIGN: The antitumor effects of NTX-301 were studied in ovarian cancer models by using cell viability, stemness and ferroptosis assays, RNA sequencing, lipidomic analyses, and stimulated Raman spectroscopy. RESULTS: Ovarian cancer cells (SKOV3, IC50 = 5.08 nmol/L; OVCAR5 IC50 = 3.66 nmol/L) were highly sensitive to NTX-301 compared with fallopian tube epithelial cells. NTX-301 downregulated expression of DNA methyltransferases 1-3 and induced transcriptomic reprogramming with 15,000 differentially expressed genes (DEG, P < 0.05). Among them, Gene Ontology enrichment analysis identified regulation of fatty acid biosynthesis and molecular functions related to aldehyde dehydrogenase (ALDH) and oxidoreductase, known features of cancer stem cells. Low-dose NTX-301 reduced the ALDH(+) cell population and expression of stemness-associated transcription factors. Stearoyl-coenzyme A desaturase 1 (SCD), which regulates production of unsaturated fatty acids (UFA), was among the top DEG downregulated by NTX-301. NTX-301 treatment decreased levels of UFA and increased oxidized lipids, and this was blunted by deferoxamine, indicating cell death via ferroptosis. NTX-301-induced ferroptosis was rescued by oleic acid. In vivo, monotherapy with NTX-301 significantly inhibited ovarian cancer and patient-derived xenograft growth (P < 0.05). Decreased SCD levels and increased oxidized lipids were detected in NTX-301-treated xenografts. CONCLUSIONS: NTX-301 is active in ovarian cancer models. Our findings point to a new mechanism by which epigenetic blockade disrupts lipid homeostasis and promotes cancer cell death.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores Enzimáticos/uso terapêutico , Aldeído Desidrogenase/genética , DNA , Lipídeos/uso terapêutico
12.
Arch. esp. urol. (Ed. impr.) ; 77(1): 16-24, 28 jan. 2024. tab
Artigo em Inglês | IBECS | ID: ibc-230493

RESUMO

Aim: The purpose of this study was to determine efficacy and safety of hydroxychloroquine (HCQ) for patients with IgA nephropathy (IgAN). Methods: PubMed, Embase, Web of Science, Cochrane Central Register of Controlled Trials, Wanfang database, Chinese National Knowledge Infrastructure and VIP database up to February 2023 were searched for associated studies comparing HCQ with any other nonHCQ for treating IgAN. The effects of proteinuria, a 50% decrease in proteinuria, estimated glomerular filtration rate (eGFR) and adverse events in patients with IgAN were examined in a meta-analysis. Data were extracted and pooled using RevMan 5.3. Results: Three randomized controlled trials (RCTs), two retrospective and two prospective studies (675 patients) that matched our inclusion criteria were identified. Compared with a control group, HCQ significantly reduced proteinuria (mean difference (MD): −0.26, 95% confidence interval (CI): −0.44 to −0.08, p < 0.01). Patients receiving HCQ plus renin-angiotensin system inhibitors (RASSi) had a better efficacy in proteinuria alleviation and a 50% decrease in proteinuria compared with control groups (MD: −0.38, 95% CI: −0.50 to −0.25, p < 0.001 and relative risk (RR) = 3.31, 95% CI: 1.73 to 6.36, p < 0.001). No appreciable variations were observed in eGFR between HCQ groups and control groups in treating patients with IgAN (MD: −2.00, 95% CI: −4.36 to 0.36, p = 0.10). Moreover, no serious adverse events were observed during HCQ treatment. Conclusions: Our results indicate HCQ is an efficient, secure treatment for IgAN (AU)


Assuntos
Humanos , Hidroxicloroquina/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Glomerulonefrite por IGA/tratamento farmacológico , Resultado do Tratamento
13.
Trials ; 25(1): 61, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233878

RESUMO

BACKGROUND: Autoimmune hepatitis (AIH) is a rare, chronic inflammatory disease of the liver. The treatment goal is reaching complete biochemical response (CR), defined as the normalisation of aspartate and alanine aminotransferases and immunoglobulin gamma. Ongoing AIH activity can lead to fibrosis and (decompensated) cirrhosis. Incomplete biochemical response is the most important risk factor for liver transplantation or liver-related mortality. First-line treatment consists of a combination of azathioprine and prednisolone. If CR is not reached, tacrolimus (TAC) or mycophenolate mofetil (MMF) can be used as second-line therapy. Both products are registered for the prevention of graft rejection in solid organ transplant recipients. The aim of this study is to compare the effectiveness and safety of TAC and MMF as second-line treatment for AIH. METHODS: The TAILOR study is a phase IIIB, multicentre, open-label, parallel-group, randomised (1:1) controlled trial performed in large teaching and university hospitals in the Netherlands. We will enrol 86 patients with AIH who have not reached CR after at least 6 months of treatment with first-line therapy. Patients are randomised to TAC (0.07 mg/kg/day initially and adjusted by trough levels) or MMF (max 2000 mg/day), stratified by the presence of cirrhosis at inclusion. The primary endpoint is the difference in the proportion of patients reaching CR after 12 months. Secondary endpoints include the difference in the proportion of patients reaching CR after 6 months, adverse effects, difference in fibrogenesis, quality of life and cost-effectiveness. DISCUSSION: This is the first randomised controlled trial comparing two second-line therapies for AIH. Currently, second-line treatment is based on retrospective cohort studies. The rarity of AIH is the main issue in clinical research for alternative treatment options. The results of this trial can be implemented in existing international clinical guidelines. TRIAL REGISTRATION: ClinicalTrials.gov NCT05221411 . Retrospectively registered on 3 February 2022; EudraCT number 2021-003420-33. Prospectively registered on 16 June 2021.


Assuntos
Hepatite Autoimune , Tacrolimo , Humanos , Tacrolimo/efeitos adversos , Hepatite Autoimune/diagnóstico , Hepatite Autoimune/tratamento farmacológico , Qualidade de Vida , Estudos Retrospectivos , Resultado do Tratamento , Imunossupressores/efeitos adversos , Ácido Micofenólico/efeitos adversos , Inibidores Enzimáticos/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase III como Assunto
14.
J Med Chem ; 67(2): 922-951, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38214982

RESUMO

Lysine specific demethylase 1 (LSD1), a transcriptional modulator that represses or activates target gene expression, is overexpressed in many cancer and causes imbalance in the expression of normal gene networks. Over two decades, numerous LSD1 inhibitors have been reported, especially some of which have entered clinical trials, including eight irreversible inhibitors (TCP, ORY-1001, GSK-2879552, INCB059872, IMG-7289, ORY-2001, TAK-418, and LH-1802) and two reversible inhibitors (CC-90011 and SP-2577). Most clinical LSD1 inhibitors demonstrated enhanced efficacy in combination with other agents. LSD1 multitarget inhibitors have also been reported, exampled by clinical dual LSD1/histone deacetylases (HDACs) inhibitors 4SC-202 and JBI-802. Herein, we present a comprehensive overview of the combination of LSD1 inhibitors with various antitumor agents, as well as LSD1 multitarget inhibitors. Additionally, the challenges and future research directionsare also discussed, and we hope this review will provide new insight into the development of LSD1-targeted anticancer agents.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desmetilases/metabolismo
15.
Chem Biol Interact ; 389: 110856, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185272

RESUMO

Neurodegeneration is a complex process involving various inflammatory mediators and cellular responses. Aldose reductase (AR) is a key enzyme in the polyol pathway, which converts glucose to sorbitol. Beyond its metabolic role, AR has also been found to play a significant role in modulating neuroinflammation. This review aims to provide an overview of the current knowledge regarding the involvement of AR inhibition in attenuating neuroinflammation and complications from diabetic neuropathies. Here, we review the literature regarding AR and neuropathy/neurodegeneration. We discuss the mechanisms underlying the influence of AR inhibitors on ocular inflammation, beta-amyloid-induced neurodegeneration, and optic nerve degeneration. Furthermore, potential therapeutic strategies targeting AR in neurodegeneration are explored. The understanding of AR's role in neurodegeneration may lead to the development of novel therapeutic interventions for other neuroinflammatory disorders.


Assuntos
Aldeído Redutase , Neuropatias Diabéticas , Humanos , Aldeído Redutase/metabolismo , Doenças Neuroinflamatórias , Neuropatias Diabéticas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inflamação/tratamento farmacológico
16.
Arch Virol ; 169(2): 29, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216710

RESUMO

Genetic reassortment of avian, swine, and human influenza A viruses (IAVs) poses potential pandemic risks. Surveillance is important for influenza pandemic preparedness, but the susceptibility of zoonotic IAVs to the cap-dependent endonuclease inhibitor baloxavir acid (BXA) has not been thoroughly researched. Although an amino acid substitution at position 38 in the polymerase acidic protein (PA/I38) in seasonal IAVs reduces BXA susceptibility, PA polymorphisms at position 38 are rarely seen in zoonotic IAVs. Here, we examined the impact of PA/I38 substitutions on the BXA susceptibility of recombinant A(H5N1) viruses. PA mutants that harbored I38T, F, and M were 48.2-, 24.0-, and 15.5-fold less susceptible, respectively, to BXA than wild-type A(H5N1) but were susceptible to the neuraminidase inhibitor oseltamivir acid and the RNA polymerase inhibitor favipiravir. PA mutants exhibited significantly impaired replicative fitness in Madin-Darby canine kidney cells at 24 h postinfection. In addition, in order to investigate new genetic markers for BXA susceptibility, we screened geographically and temporally distinct IAVs isolated worldwide from birds and pigs. The results showed that BXA exhibited antiviral activity against avian and swine viruses with similar levels to seasonal isolates. All viruses tested in the study lacked the PA/I38 substitution and were susceptible to BXA. Isolates harboring amino acid polymorphisms at positions 20, 24, and 37, which have been implicated in the binding of BXA to the PA endonuclease domain, were also susceptible to BXA. These results suggest that monitoring of the PA/I38 substitution in animal-derived influenza viruses is important for preparedness against zoonotic influenza virus outbreaks.


Assuntos
Dibenzotiepinas , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Morfolinas , Orthomyxoviridae , Piridonas , Tiepinas , Triazinas , Animais , Cães , Humanos , Suínos , Vírus da Influenza A/genética , Oxazinas/farmacologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Virus da Influenza A Subtipo H5N1/genética , Tiepinas/farmacologia , Tiepinas/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Orthomyxoviridae/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Substituição de Aminoácidos , Endonucleases/genética , Farmacorresistência Viral/genética
17.
Sci Rep ; 14(1): 1739, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242973

RESUMO

The market approval of Tazemetostat (TAZVERIK) for the treatment of follicular lymphoma and epithelioid sarcoma has established "enhancer of zeste homolog 2" (EZH2) as therapeutic target in oncology. Despite their structural similarities and common mode of inhibition, Tazemetostat and other EZH2 inhibitors display differentiated pharmacological profiles based on their target residence time. Here we established high throughput screening methods based on time-resolved fluorescence energy transfer, scintillation proximity and high content analysis microscopy to quantify the biochemical and cellular binding of a chemically diverse collection of EZH2 inhibitors. These assays allowed to further characterize the interplay between EZH2 allosteric modulation by methylated histone tails (H3K27me3) and inhibitor binding, and to evaluate the impact of EZH2's clinically relevant mutant Y641N on drug target residence times. While all compounds in this study exhibited slower off-rates, those with clinical candidate status display significantly slower target residence times in wild type EZH2 and disease-related mutants. These inhibitors interact in a more entropy-driven fashion and show the most persistent effects in cellular washout and antiproliferative efficacy experiments. Our work provides mechanistic insights for the largest cohort of EZH2 inhibitors reported to date, demonstrating that-among several other binding parameters-target residence time is the best predictor of cellular efficacy.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Piridonas , Humanos , Benzamidas , Compostos de Bifenilo , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Morfolinas , Piridonas/uso terapêutico
18.
Clin Cancer Res ; 30(7): 1248-1255, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190117

RESUMO

PURPOSE: Patients with peripheral T-cell lymphomas (PTCL) in the relapsed or refractory (r/r) setting have only a limited number of therapies available, and the prognosis is extremely poor. SHR2554 is an oral inhibitor against EZH2, a rational therapeutic target for lymphomas. PATIENTS AND METHODS: This was a multicenter, two-part, phase I study of SHR2554 in r/r mature lymphoid neoplasms. In part I, 350 mg twice daily was established as the recommended phase II dose (RP2D) based on the findings during dose escalation and expansion; subsequently, selected lymphoma subtypes were recruited in clinical expansion cohorts to receive SHR2554 at RP2D. Here, we provide an in-depth assessment of SHR2554 at RP2D in subpopulation with r/r PTCL. RESULTS: Twenty-eight patients were included for analysis (17 angioimmunoblastic T-cell lymphoma and 11 not otherwise specified). Eighteen (64%) patients had received ≥2 lines of previous anticancer therapies. The objective response rate was 61% [95% confidence interval (CI), 41-78]. Responses were still ongoing in 59% (10/17) of the responders; estimated median duration of response was 12.3 months (95% CI, 7.4-not reached). Median progression-free survival was 11.1 months (95% CI, 5.3-22.0), and 12-month overall survival rate was 92% (95% CI, 72-98). The most common grade 3 or 4 treatment-related adverse events were decreased platelet count [nine (32%)] as well as decreased white blood cell count, decreased neutrophil count, and anemia [four (14%) for each]. No treatment-related deaths were reported. CONCLUSIONS: This extended follow-up analysis further supports SHR2554 as a therapeutic opportunity for patients with r/r PTCL.


Assuntos
Linfoma de Células T Periférico , Humanos , Linfoma de Células T Periférico/tratamento farmacológico , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/patologia , Resultado do Tratamento , Proteína Potenciadora do Homólogo 2 de Zeste , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Prognóstico , Inibidores Enzimáticos/uso terapêutico
19.
J Med Chem ; 67(1): 402-419, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38164929

RESUMO

Trypanothione reductase (TR) is a suitable target for drug discovery approaches against leishmaniasis, although the identification of potent inhibitors is still challenging. Herein, we harnessed a fragment-based drug discovery (FBDD) strategy to develop new TR inhibitors. Previous crystallographic screening identified fragments 1-3, which provided ideal starting points for a medicinal chemistry campaign. In silico investigations revealed critical hotspots in the TR binding site, guiding our structure- and ligand-based structure-actvity relationship (SAR) exploration that yielded fragment-derived compounds 4-14. A trend of improvement in Leishmania infantum TR inhibition was detected along the optimization and confirmed by the crystal structures of 9, 10, and 14 in complex with Trypanosoma brucei TR. Compound 10 showed the best TR inhibitory profile (Ki = 0.2 µM), whereas 9 was the best one in terms of in vitro and ex vivo activity. Although further fine-tuning is needed to improve selectivity, we demonstrated the potentiality of FBDD on a classic but difficult target for leishmaniasis.


Assuntos
Inibidores Enzimáticos , Leishmaniose , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/química , NADH NADPH Oxirredutases/metabolismo , Leishmaniose/tratamento farmacológico , Sítios de Ligação
20.
Recent Pat Anticancer Drug Discov ; 19(3): 280-297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37070439

RESUMO

Highly proliferating cells, such as cancer cells, are in high demand of pyrimidine nucleotides for their proliferation, accomplished by de novo pyrimidine biosynthesis. The human dihydroorotate dehydrogenase (hDHODH) enzyme plays a vital role in the rate-limiting step of de novo pyrimidine biosynthesis. As a recognised therapeutic target, hDHODH plays a significant role in cancer and other illness. In the past two decades, small molecules as inhibitors hDHODH enzyme have drawn much attention as anticancer agents, and their role in rheumatoid arthritis (RA), and multiple sclerosis (MS). In this patent review, we have compiled patented hDHODH inhibitors published between 1999 and 2022 and discussed the development of hDHODH inhibitors as anticancer agents. Therapeutic potential of small molecules as hDHODH inhibitors for the treatment of various diseases, such as cancer, is very well recognised. Human DHODH inhibitors can rapidly cause intracellular uridine monophosphate (UMP) depletion to produce starvation of pyrimidine bases. Normal cells can better endure a brief period of starvation without the side effects of conventional cytotoxic medication and resume synthesis of nucleic acid and other cellular functions after inhibition of de novo pathway using an alternative salvage pathway. Highly proliferative cells such as cancer cells do not endure starvation because they are in high demand of nucleotides for cell differentiation, which is fulfilled by de novo pyrimidine biosynthesis. In addition, hDHODH inhibitors produce their desired activity at lower doses rather than a cytotoxic dose of other anticancer agents. Thus, inhibition of de novo pyrimidine biosynthesis will create new prospects for the development of novel targeted anticancer agents, which ongoing preclinical and clinical experiments define. Our work brings together a comprehensive patent review of the role of hDHODH in cancer, as well as various patents related to the hDHODH inhibitors and their anticancer and other therapeutic potential. This compiled work on patented DHODH inhibitors will guide researchers in pursuing the most promising drug discovery strategies against the hDHODH enzyme as anticancer agents.


Assuntos
Antineoplásicos , Neoplasias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Di-Hidro-Orotato Desidrogenase , Patentes como Assunto , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Pirimidinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...